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Abstract In García Guirao and Lampart (J Math Chem 48:159–164, 2010) presented
a lattice dynamical system (LDS) stated by Kaneko (Phys Rev Lett 65:1391–1394,
1990) which is related to the Belusov–Zhabotinskii reaction. In this paper, we consider
the following more general LDS:
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wherem is discrete time index, n is lattice side indexwith system size L , ε ∈ I = [0, 1]
is coupling constant and fn is a continuous selfmap on I for every n ∈ {1, 2, . . . , L}.
In particular, we prove that for zero coupling constant, if there is n ∈ {1, 2, . . . , L}
such that fn has positive topological entropy, then so does this coupled map lattice
system. This result extends the existing one.
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1 Introduction

By a topological dynamical system (TDS) (X, f ) we mean a compact metric space X
and a continuousmap f : X → X . Since Li andYorke [1] introduced the term of chaos
in 1975, TDS were highly considered and studied in the literature (see [2,3]) because
they are very good examples of problems coming from the theory of topological
dynamics and model many phenomena from biology, physics, chemistry, engineering
and social sciences.

Coming from physical/chemical engineering applications, such as digital filtering,
imaging and spatial vibrations of the elements which compose a given chemical prod-
uct, a generalization of classical discrete dynamical systems has recently appeared as
an important subject for investigation, wemean the so called lattice dynamical systems
(LDS) or 1D spatiotemporal discrete systems. In [4] one can see the importance of
these type of systems.

To analyze when one of these type of systems has a complicated dynamics or not by
the observation of one topological dynamical property is an open problem (see [5]). In
[5], by using the notion of chaos, the authors characterized the dynamical complexity
of a coupled lattice system stated by Kaneko [6] (for more details see for references
therein) which is related to the Belusov–Zhabotinskii reaction. They proved that this
coupled map lattice (CML) systemwith fn = � for every n ∈ {1, 2, . . . , L} is chaotic
in the sense of both Devaney and Li–Yorke for zero coupling constant, where � is the
tent map. Also, some problems on the dynamics of this CML system with fn = � for
every n ∈ {1, 2, . . . , L} were stated by them for the case of having non-zero coupling
constants.

Inspired by García Guirao and Lampart [7], we will investigate into the dynamical
properties of the following more general LDS:
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where m is discrete time index, n is lattice side index with system size L , ε ∈ [0, 1] is
coupling constant and fn is a continuous selfmap of I for every n ∈ {1, 2, . . . , L}. In
particular, we prove that for zero coupling constant, if there exists n ∈ {1, 2, . . . , L}
such that fn has positive topological entropy, then this CML system has positive
topological entropy. Our result extends the existing one.

2 Preliminaries

Firstly we recall some notations and some concepts. Throughout this paper, X is a
compact metric space with metric d, (X, f ) is a TDS and I = [0, 1].

A pair of points x, y ∈ X is called a Li–Yorke pair of system (X, f ) if the following
conditions are satisfied:

(1) lim sup
n→∞

d( f n(x), f n(y)) > 0.

(2) lim inf
n→∞ d( f n(x), f n(y)) = 0.
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A subset S ⊂ X is called a LY-scrambled set for f (Li–Yorke set) if the set S has at
least two points and every pair of distinct points in S is a Li–Yorke pair. A system
(X, f ) or a map f : X → X is said to be chaotic in the sense of Li–Yorke if it has an
uncountable scrambled set.

The state space of LDS is the set

X =
{
x : x = {xi }, xi ∈ R

a, i ∈ Z
b, ‖xi‖ < ∞

}
.

where a ≥ 1 is the dimension of the range space of the map of state xi , b ≥ 1 is the
dimension of the lattice and the l2 norm

‖x‖2 =
⎛

⎝
∑

i∈Zb

|xi |2
⎞

⎠

1
2

is usually taken (|xi | is the length of the vector xi ) (see [5]).
We will deal with the following more general systems which generalize CML

system stated by Kaneko [6] (for more details see for references therein) which is
related to the Belusov–Zhabotinskii reaction (for this point we refer to [8], and for
experimental study of chemical turbulence by this method one can see [9–11]):
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where m is discrete time index, n is lattice side index with system size L , ε ∈ [0, 1] is
coupling constant and fn is a continuous selfmap on I for every 1 ≤ n ≤ L .

In general, we assume that one of the following periodic boundary conditions of
the system (1) or (2) is true:

(1) xmn = xmn+L ,
(2) xmn = xm+L

n ,
(3) xmn = xm+L

n+L ,

standardly, the first case of the boundary conditions is used.

3 Main results

Let d be the product metric on the product space I L , i.e.,

d((x1, x2, . . . , xL), (y1, y2, . . . , yL)) =
(

L∑

i=1

(xi − yi )
2

) 1
2

for any (x1, x2, . . . , xL), (y1, y2, . . . , yL) ∈ I L .
In mathematics, the topological entropy of a topological dynamical system is a

nonnegative real number that measures the complexity of the system. Topological
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entropywas first introduced in 1965 byAdler et al. [12]. Their definition wasmodelled
after the definition of the Kolmogorov–Sinai, or metric, entropy. Later Dinaburg and
Rufus Bowen gave a new, but equivalent definition (see [13,14]). Now, we recall this
equivalent definition formulated by Bowen [13], and independently by Dinaburg [14].

Let (X, d) be a metric space and x ∈ X , and let f : X → X be a uniformly
continuous map. For any n ∈ N and any ε > 0, a set E ⊂ X is (n, ε)-separated with
respect to f if x, y ∈ E and x 	= y then max{d( f i (x), f i (y)) : 0 ≥ i ≤ n − 1} > ε.
For any compact subset K ⊂ X , let sn(ε, K )denote the largest cardinality of any (n, ε)-
separated subset of K with respect to f . We set s(ε, K , f ) = lim sup

n→∞
1
n log sn(ε, K )

for any ε > 0 and any compact subset K of X . The topological entropy of a uniformly
continuous map f : X → X on a metric space X with metric d is a number h( f ) ∈
[0,+∞] defined by

h( f ) = lim sup
K

lim
ε→0

s(ε, K , f ),

where the supremum is taken over the collection of all compact subsets.
In [7] the authors proved that if fn = � for every n ∈ {1, 2, . . . , L}, then system

(1) or system (2) has positive topological entropy for zero coupling constant. Inspired
by this result we have the following theorem.

Theorem 3.1 For zero coupling constant, if there is n ∈ {1, 2, . . . , L} such that fn
has positive topological entropy, then the system (2) has positive topological entropy.

Proof For ε = 0, it is clear that the system (2) is equivalent to the system (I L , f1× f2×
· · ·× fL). From [15]we know that h( f1× f2×· · ·× fL) = h( f1)+h( f2)+ · · · +h( fL).
Obviously, h( f1 × f2 ×· · ·× fL) ≥ h( fi ) for every i ∈ {1, 2, . . . , L}. By hypothesis,
we have h( f1 × f2 × · · · × fL) ≥ h( fn) > 0. Thus, the proof is finished. 
�
Remark 3.1 The above theorem extends Theorem 1 in [7].

Example 3.1 Let fn = �n for every n ∈ {1, 2, . . . , L} and � be the tent map. Then
the system (2) has positive topological entropy.

For any given coupling constant ε ∈ (0, 1], the dynamical behaviour of the system
(2) is more complicated. So, we have the following problem.

Problem 3.1 For any coupling constant ε ∈ (0, 1], is the above three results true?
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